Positive Solutions for Semipositone Discrete Eigenvalue Problems via Three Critical Points Theorem
نویسنده
چکیده
In this paper, multiple positive solutions for semipositone discrete eigenvalue problems are obtained by using a three critical points theorem for nondifferentiable functional. Keywords—Discrete eigenvalue problems, positive solutions, semipositone, three critical points theorem
منابع مشابه
Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters
In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method. Keywords—Discrete boundary value problems, nonsmooth critical point theory, positive solutions, semipositone, sub-super solutions method
متن کاملPositive solutions of second-order semipositone singular three-point boundary value problems
In this paper we prove the existence of positive solutions for a class of second order semipositone singular three-point boundary value problems. The results are obtained by the use of a GuoKrasnoselskii’s fixed point theorem in cones.
متن کاملPositive Solutions for Multiparameter Semipositone Discrete Boundary Value Problems via Variational Method
متن کامل
Existence of three positive solutions for nonsmooth functional involving the p-biharmonic operator
This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...
متن کاملComputing the positive solutions of the discrete third-order three-point right focal boundary-value problems
we are concerned with the discrete right-focal boundary value problem A3z(t) = f(t, z(t + l)), z(ti) = Az(tz) = A2z(ts) = 0, and the eigenvalue problem A3z(t) = Xa(t)f(z(t + 1)) with the same boundary conditions, where tl < t2 < t3. Under various assumptions on f, a, and X, we prove the existence of positive solutions of both problems by applying a fixed-point theorem. @ 2003 Elsevier Science L...
متن کامل